FunSAV: Predicting the Functional Effect of Single Amino Acid Variants Using a Two-Stage Random Forest Model

نویسندگان

  • Mingjun Wang
  • Xing-Ming Zhao
  • Kazuhiro Takemoto
  • Haisong Xu
  • Yuan Li
  • Tatsuya Akutsu
  • Jiangning Song
چکیده

Single amino acid variants (SAVs) are the most abundant form of known genetic variations associated with human disease. Successful prediction of the functional impact of SAVs from sequences can thus lead to an improved understanding of the underlying mechanisms of why a SAV may be associated with certain disease. In this work, we constructed a high-quality structural dataset that contained 679 high-quality protein structures with 2,048 SAVs by collecting the human genetic variant data from multiple resources and dividing them into two categories, i.e., disease-associated and neutral variants. We built a two-stage random forest (RF) model, termed as FunSAV, to predict the functional effect of SAVs by combining sequence, structure and residue-contact network features with other additional features that were not explored in previous studies. Importantly, a two-step feature selection procedure was proposed to select the most important and informative features that contribute to the prediction of disease association of SAVs. In cross-validation experiments on the benchmark dataset, FunSAV achieved a good prediction performance with the area under the curve (AUC) of 0.882, which is competitive with and in some cases better than other existing tools including SIFT, SNAP, Polyphen2, PANTHER, nsSNPAnalyzer and PhD-SNP. The sourcecodes of FunSAV and the datasets can be downloaded at http://sunflower.kuicr.kyoto-u.ac.jp/sjn/FunSAV.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-silico study to identify the pathogenic single nucleotide polymorphisms in the coding region of CDKN2A gene

Background: CDKN2A, encoding two important tumor suppressor proteins p16 and p14, is a tumor suppressor gene. Mutations in this gene and subsequently the defect in p16 and p14 proteins lead to the downregulation of RB1/p53 and cancer malignancy. To identify the structural and functional effects of mutations, various powerful bioinformatics tools are available. The aim of this study is the ident...

متن کامل

Propensity based classification: Dehalogenase and non-dehalogenase enzymes

The present work was designed to classify and differentiate between the dehalogenase enzyme to non–dehalogenases (other hydrolases) by taking the amino acid propensity at the core, surface and both the parts. The data sets were made on an individual basis by selecting the 3D structures of protein available in the PDB (Protein Data Bank). The prediction of the core amino acid were predicted by I...

متن کامل

Comparison of Random Forest and Logistic Regression Methods in Predicting Mortality in Colorectal Cancer Patients and its Related Factors

Background and Objectives: The purpose of this study was to predict the mortality rate of colorectal cancer in Iranian patients and determine the effective factors  on the mortality of patients with colorectal cancer using random forest and logistic regression methods.   Methods: Data from 304 patients with colorectal cancer registry from the Gastroenterology and Liver Research Center of Shah...

متن کامل

Prioritization of Deleterious Variations in the Human Hypoxanthine-Guanine Phosphoribosyltransferase Gene

ABSTRACT             Background and Objectives: Non-synonymous single nucleotide polymorphisms are typical genetic variations that may potentially affect the structure or function of expressed proteins, and therefore could be involved in complex disorders. A computational-based analysis has been done to evaluate the phenotypic effect of no...

متن کامل

Computational Prediction of the Effects of Single Nucleotide Polymorphisms of the Gene Encoding Human Endothelial Nitric Oxide Synthase

ABSTRACT           Background and Objective: Genetic variations in the gene encoding endothelial nitric oxide synthase (eNOS) enzyme affect the susceptibility to cardiovascular disease. Identification of the way these changes affect eNOS structure and function in laboratory conditions is difficult and time-consuming. Thus, it seems essential to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012